GNV-310 EPS 16CH NIM to ECL CONVERTOR

EPS 規格 16ch NIM to ECL 信号変換器 (VME 規格では有りません)

概説

このモジュールは、素粒子・原子核実験用に開発されたものです。現在一般的に使用されている VME 規格と同じ ユーロカードダブルハイト基板 (6 U) を使用した 信号変換モジュールです。 16 チャネルの入出力信号機能を有しており チャネル間の信号干渉を極力避けた構成です。EPS (Euro-card Power Station) ラックを使用することにより効率良く多チャンネルのシステムが構築できます。NIM 入力信号はフロントパネルより 同軸ケーブルコネクターに入ります。

出力信号はリヤのJ1コネクター部分に 34ピンのコネクタより ECL 差動信号を出力します。 同様にファンアウト信号はフロントパネルの中央コネクタからも出力します。

特徴

●入力/出力信号

入力信号 : NIM ファーストネガティブ信号 16 mA

入力保護回路有り

入力インピーダンス 50Ω

出力信号: 差動 ECL 信号出力(リアパネル、フロントパネル)

34ピンフラットコネクタ 使用

●仕様

チャンネル数 : 16チャンネル

注文時のご注意

通常 J1 のコネクタ部分にコネクタを配置せず ファンアウト機能を使用しない場合は 事前に指定してください。

くり返し周波数:最大200MHz以上 (出力パルスが長い場合はこの限りではありません)

形状 : 20X260X165MM サイズ モジュール

電源コネクタ: DIN 規格 1 5 ピン電源コネクター、J 2 コネクタ位置 シュロフ 69001-865 使用

ピン番号	電源電圧	使用電流
4	GND	
6	+ 1 2 V	
8	-12V	
1 0	GND	
1 2	+ 5 V	
1 4	GND	
1 6	GND	
1 8	3. 3V	
2 0	3. 3V	
2 2	GND	
2 4	-2V	使用
2 6	GND	
2 8	GND	
3 0	- 5 V	使用
3 2	- 5 V	使用

3314 Hb 1	
消費電力	٠ ١

ピン番号	信号	信号	ピン番号
1	POS_CH1	NEG_CH1	2
3	POS_CH2	NEG_CH2	4
5	POS_CH3	NEG_CH3	6
7	POS_CH4	NEG_CH4	8
9	POS_CH5	NEG_CH5	10
11	POS_CH6	NEG_CH6	12
13	POS_CH7	NEG_CH7	14
15	POS_CH8	NEG_CH8	16
17	POS_CH9	NEG_CH9	18
19	POS_CH10	NEG_CH10	20
21	POS_CH11	NEG_CH11	22
23	POS_CH12	NEG_CH12	24
25	POS_CH13	NEG_CH13	26
27	POS_CH14	NEG_CH14	28
29	POS_CH15	NEG_CH15	30
31	POS_CH16	NEG_CH16	32
33	GND	GND	34

出力コネクタピン配置図 出力は ECL 差動出力です